
Our
Network

James	Fairbanks,	GTRI
Seth	Bromberger,	LLNL

LightGraphs:

Our
Story



About	Seth

• Security	researcher	focused	on	critical	infrastructure

• Looking	at	ways	to	combine	graph	analytics	and	
machine	learning	to	solve	cybersecurity	problems

• NOT	A	MATHEMATICIAN



About	James

• Research	Engineer	focusing	on	online	media	and	
cybersecurity
• Looking	at	ways	to	combine	graph	analytics	and	
machine	learning	to	solve	cybersecurity	problems
• Used	LightGraphs to	study	numerical	accuracy	
requirements	of	spectral	clustering

• A	MATHEMATICIAN



Why	Should	We	Care	About	Graphs?

• Uses	of	graphs	in	computer	science:
• Syntax	Trees,	Markov	Chains,	State	Machines,	Scheduling	DAGs,	…

• Turns	out	that	graphs	are	everywhere!

• We	focused	on	graph	analysis:
• Social	media,	cybersecurity,	grid	modeling	(energy,	transport,	…)



In	the	beginning….

• Consulting	for	a	client	who	wants	to	analyze	
activity	logs

• Graph	representation	of	activity	solves	a	pressing	
problem

• Graphs.jl looks	great.	Let’s	use	it!



Graph	Factory	vs	Graph	Library

• Generic	Interfaces
• Basic	interface
• Vertex	List	interface
• Edge	List	interface
• Vertex	Map	interface
• Edge	Map	interface
• Adjacency	List	interface
• Incidence	List	interface
• Bidirectional	Incidence	List	interface



NetworkX

• Simple	to	use
• 1	language	solution
• Lots	of	features	and	analysis	for	complex	networks
• Dictionary	of	Dictionaries
• Just	too	slow



LightGraphs Goals

Simple

Performant Consistent



Design	Goals

• Everything’s	a	tradeoff
• Adjacency	lists	vs	Sparse	Matrices	vs	Dense	Matrices	vs….
• Vertex	/	Edge	metadata?
• Vertex	indexing?
• Edge	sets?	Edge	iterators?	

• Guides	every	decision	we	make.

Simple

Performant Consistent



Sometimes	we	change	direction

• Adjacency	lists:	now	sorted
• Cost	increase	for	graph	creation	/	edge	insertion	(usually	done	once)
• Cost	advantage	for	all	random	edge	accesses

• “Parameterization	is	the	devil”	(@sbromberger,	2015)
• Complexity	increase
• But:

• memory	savings	for	most	graphs
• flexibility	for	new	graph	types
• forced	us	to	define	an	interface

• “Parameterize	all	the	things!”	(@sbromberger,	2017)



Example	Design	Tradeoff:	Edge	Sets

• Originally,	we	used	Set{Edge} to	provide															edge	lookup

• lookup	is	beneficial	in	some	cases,	but	leads	to
• increased	memory	usage
• slow	edge	insertion

• Dropping	this	feature	halved	the	memory	usage	of	graphs,	at	the	
expense	of																							edge	lookup.
• Users	can	still	produce	their	own	edge	indices	to	accelerate	lookup
• Edge	insertion	is	still	faster,	even	with	sorted	adjacency	lists



Reaping	the	rewards	of	Julian	design

• We	are	all	figuring	out	what	idiomatic	
Julian	design	means	together

• We	take	advantage	of	types	and	
multiple	dispatch	to	achieve	this	
design

Simple

Performant Consistent



Advantages	of	Simplicity

• One	language:	easy	to	develop
• Fixed	data	structures:	simple	reasoning	about	performance
• No	metadata:	simple	to	understand	and	use



Performance	Benchmarks

• Graph	memory:

• DiGraphs:	

Test LightGraphs NetworkX igraph graph-tool

G1 = Erdos-Renyi (10k,	0.1) (s) 7.13 19 2.65 19.3

G2 = Barabassi-Albert	(10k, 400)	(s) 2.89 13.8 3.6 10.1

Betweenness (G2[1:3000])	(s) 4.02 DNF 6.77 3.34

Closeness (G2,	s) 35.79 DNF 82 44.2

PageRank	(directed	G2,	ms) 28.20 5	130 75.8 30.2

Local	Clustering	Coefficient	(G2,	ms) 255.53 37 400 167 270



Edge	iterators	use	standard	Julia	interfaces
• We	use	the	iterator	interface	start, next, done in	order	to	provide	an	iterator	over	edges

for i in vertices(g)
for j in neighbors(g, i)

produce(i, j)
end

end

• This	leverages	idiomatic	Julia	features	to	improve	the	readability	of	code.
• Encourages	“just	write	the	loop”	programming	style	instead	of	bulk	operations	with	optimized	primitives

for e in edges(g)
do work on e

end



GraphMatrices:	Encoding	Math	Errors	into	the	Type	System

• For	spectral	graph	theory	you	have	to	manage	various	“Graph	Matrices”
• {Combinatorial,	Normalized,	Stochastic,	Averaging}	{Adjacency,	Laplacian}

• Math	errors	are	tricky	because	they	don’t	crash	the	code

• Compiler/Type	Errors crash	the	code

• A	“Matrix”	type is	too	broad

• Encoding	math	into	the	type	system	improves	code	verification	and	
validation



Types	and	Dispatch	lead	to	improved	generalizability

• GraphMatrices.jl was	written	for	SparseMatrixCSC and	then	extended	
to	support	storing	the	graph	as	a	LG	graph.

• You	can	compute	the	eigenvalues	of	a	Graph	Laplacian	without	making	
a	sparse	matrix	copy.

• Reduces	memory	overhead	by	a	factor	of	2



Abstraction	Redux
• Introduced	AbstractGraph to	allow	more	experimentation

• Allows	graphs	that	store	metadata	inside	or	outside	of	edges

• Provides	flexibility	for	Out-of-core	/	Parallel	computation

• Look	to	DifferentialEquations.jl and	JuMP for	inspiration	on design

• Weighted	Graphs:	LightGraphs.jl/pull/663



GSOC	2017
• Welcome	Divyansh!

• Focus	on	parallelizing	expensive	graph	
algorithms

• To	date:	betweenness centrality,	closeness	
centrality,	and	Dijkstra	shortest	paths

• More	planned



Why	you should	be	using	LightGraphs

• Single-language	solution
• Active	developer	community
• Easy	and	fun	to	use Simple

Performant Consistent

Thanks	to	all	contributors	and	the	whole	Julia	community!


