LightGraphs:

Our Our
Network Story

James Fairbanks, GTRI
Seth Bromberger, LLNL

About Seth

 Security researcher focused on critical infrastructure

* Looking at ways to combine graph analytics and
machine learning to solve cybersecurity problems

* NOT A MATHEMATICIAN

About James

* Research Engineer focusing on online media and
cybersecurity

* Looking at ways to combine graph analytics and
machine learning to solve cybersecurity problems

e Used LightGraphs to study numerical accuracy
requirements of spectral clustering

* A MATHEMATICIAN

Why Should We Care About Graphs?

e Uses of graphs in computer science:
* Syntax Trees, Markov Chains, State Machines, Scheduling DAGs, ...

* Turns out that graphs are everywhere!

* We focused on graph analysis:
» Social media, cybersecurity, grid modeling (energy, transport, ...)

In the beginning....

* Consulting for a client who wants to analyze
activity logs

* Graph representation of activity solves a pressing
problem

* Graphs.jl looks great. Let’s use it!

Graph Factory vs Graph Library

e Generic Interfaces

e Basic interface

* Vertex List interface

* Edge List interface

* Vertex Map interface

* Edge Map interface

* Adjacency List interface

* Incidence List interface
 Bidirectional Incidence List interface

NetworkX

* Simple to use

* 1 language solution

* Lots of features and analysis for complex networks
* Dictionary of Dictionaries

* Just too slow

LightGraphs Goals

Simple

Performant Consistent

Design Goals

* Everything’s a tradeoff
* Adjacency lists vs Sparse Matrices vs Dense Matrices vs....
* Vertex / Edge metadata?
* Vertex indexing?
* Edge sets? Edge iterators?

Simple

* Guides every decision we make.

Performant Consistent

Sometimes we change direction

* Adjacency lists: now sorted
* Cost increase for graph creation / edge insertion (usually done once)
* Cost advantage for all random edge accesses

* “Parameterization is the devil” (@sbromberget, 2015)
* Complexity increase

* But:
* memory savings for most graphs
* flexibility for new graph types
» forced us to define an interface

* “Parameterize all the things!” (@sbromberger, 2017)

Example Design Tradeoff: Edge Sets

* Originally, we used Set{Edge} to provide O(l) edge lookup

. O(l) lookup is beneficial in some cases, but leads to
* increased memory usage
* slow edge insertion

* Dropping this feature halved the memory usage of graphs, at the
expense of O(log n) edge lookup.
* Users can still produce their own edge indices to accelerate lookup
* Edge insertion is still faster, even with sorted adjacency lists

Reaping the rewards of Julian design

* We are all figuring out what idiomatic
Julian design means together

* We take advantage of types and
multiple dispatch to achieve this
design

Simple

Performant

Consistent

Advantages of Simplicity

* One language: easy to develop
* Fixed data structures: simple reasoning about performance
* No metadata: simple to understand and use

mutable struct SimpleGraph{T<:Integer} <: AbstractSimpleGraph
ne::Int
fadjlist::Vector{Vector{T}}

end

Performance Benchmarks

* Graph memory: Sizeof(Int) + (‘V‘ + 1)h + 2| E Sizeof(T)
- DiGraphs: sizeof(Int) + 2(|V | + 1)h + 2| E| sizeof(T')

LightGraphs NetworkX igraph graph-tool
G1 = Erdos-Renyi (10k, 0.1) (s) 7.13 19 2.65 19.3
G2 = Barabassi-Albert (10k, 400) (s) 2.89 13.8 3.6 10.1
Betweenness (G2[1:3000]) (s) 4.02 DNF 6.77 3.34
Closeness (G2, s) 35.79 DNF 82 44.2
PageRank (directed G2, ms) 28.20 5130 75.8 30.2
Local Clustering Coefficient (G2, ms) 255.53 37 400 167 270

Edge iterators use standard Julia interfaces

- We use the iterator interface start, next, donein orderto provide an iterator over edges
for i in vertices(g)
for j in neighbors(g, 1i)
produce(i, j)
end
end

- This leverages idiomatic Julia features to improve the readability of code.
- Encourages “just write the loop” programming style instead of bulk operations with optimized primitives

for e in edges(g)
do work on e
end

GraphMatrices: Encoding Math Errors into the Type System

)

e For spectral graph theory you have to manage various “Graph Matrices’
e {Combinatorial, Normalized, Stochastic, Averaging} {Adjacency, Laplacian}

 Math errors are tricky because they don’t crash the code

* Compiler/Type Errors crash the code

A “Matrix” type is too broad

* Encoding math into the type system improves code verification and
validation

Types and Dispatch lead to improved generalizability

e GraphMatrices.jl was written for SparseMatrixCSC and then extended
to support storing the graph as a LG graph.

* You can compute the eigenvalues of a Graph Laplacian without making
a sparse matrix copy.

* Reduces memory overhead by a factor of 2

—type CombinatorialAdjacency{T} <: Adjacency{T} +type CombinatorialAdjacency{T,S,V} <: Adjacency{T}
- A::SparseMatrix{T} + A::S
- D::Vector{T} + D::V
end end
function CombinatorialAdjacency{T}(A::SparseMatrix{T}) function CombinatorialAdjacency{T}(A::SparseMatrix{T})
D = vec(sum(A,1)) D = vec(sum(A,1))
- return CombinatorialAdjacency(A,D) + return CombinatorialAdjacency{T,SparseMatrix{T},typeof(D)}(A,D)

end end

Abstraction Redux
* Introduced AbstractGraph to allow more experimentation

* Allows graphs that store metadata inside or outside of edges

Provides flexibility for Out-of-core / Parallel computation

Look to DifferentialEquations.jl and JuMP for inspiration on design

Weighted Graphs: LightGraphs.jl/pull/663

GSOC 2017/

* Welcome Divyansh!

* Focus on parallelizing expensive graph
algorithms

* To date: betweenness centrality, closeness
centrality, and Dijkstra shortest paths

* More planned

Why you should be using LightGraphs

* Single-language solution
* Active developer community
* Easy and fun to use Simple

Performant Consistent

Thanks to all contributors and the whole Julia community!

